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Table 4 

Average values of Ki for h.c.c. tr ansition 

metals 8S derived from equation (1) 
using the shock wave data [14-15) 

Molar 
Metals volume, K' 

3 T 
eID 

Ta 10.8 4.10 

Nb 10.8 3.90 

\I 9.6 4.18 

Mo 9.4 4.32 

V 8.4 4.00 

I 
general trend is for KT to increase with 
decreasing Q. The data points of most of 
the f.c.c. a;d h.c.p. metals fall within 
+ 10 per cent of the straight line shown 
in Figure 1. Exceptions are Ag and Au, 
which are discussed later, and Ru. Recent 
work at the University of Hawaii indicates 
that the ultrasonic value of KT is subject 
to reexamination. Our analysis of the Ru 
high pressure x-ray data [9] gives Ki = 

4.7 + 2.2, which is more consistent with 
the ;ther data, but is still poorly deter­
mined. 

The general relation between Ki and 
Q. shown in Figure 1 can be understood 
from a relatively simple model originally 
proposed by Mott and Jones [20] for the 
bulk modulus of metals. This model con­
siders two contributions to KT : 

KT KF + KSR (4) 

where K is due to the volume dependence 
of the termi energy of the free electrons, 
and KSR represents a short-range repulsive 
interaction between ion cores . 

We assume a free electron gas model 
for the Fermi contribution. The bulk 
modulus of the electron gas is 

E 
K 1. 2. z* 

F 3 Q. 
(5) 

where Z* is the effective number of free 
electrons per atom, and EF is the Fermi 
energy which is proportional to Q~2/3 . 
Differentiating (5) with respect to 
pressure we get 

, 
KF 

dK
F 

dP 
5K F 
3KT 

(6) 

The short-range repulsive energy is 
assumed to be given by a Born-Mayer poten­
tial of the form 

W(r) A exp[-B(r/r O - 1)] (7) 

where A and B are material parameters 
and r is the interatomic separation . 
Fuchs [21] considered a central force 
model for the f.c.c. structure and found 
the short-range contribution to K to be 

2 2 
K ~ d W(r) 

S R 3Q. d r 2 
( 8) 

when only nearest neighbor interactions 
are taken into account . Since an atom 
has twelve nearest neighbors in both 
h. c.p . and f.c.c. structures, ( 8 ) should 
be a reasonable approximation for the 
h.c.p. me tals also. Now (7) and ( 8) can 
be combined to give 

2B2A 
KSR 3"S1 (9) 

and further differentiation with respect 
to pressure yields 

. 
KSR 

dK SR 
dP 

K SR 3K (B+I) 
T 

(10) 

Using (4), (6), (10), and the pres­
sure derivative of (4) we find 

I 

KT 
K 2. + SR (B-4) 

3 KT 3 
(ll) 

Equation (11) predicts that for very large 
Q. (when KSR 'VO), K' -+ 5/3. The straight 
line in Figure 1 waI in fact obtained by 
fixing the intercept at 5/3 and using the 
well defined cluster of rare earths (Gd, 
Dy, and Er) to determine the slope. The 
good agreement over the large range of Qo 
values indicates that K~ is linear in 
Q -1 and hence, from (11), and assuming 
B 'is roughly constant (a reasonable 
assumption), KSR/KT is approximately pro­
portional to Q -1. At higher Qo-I, 
KSR'V KT' and ~e might expect K~ to level 
off and become less dependent on Q. It 
may be noted here that a linear Ki

o
- Qo-l 

relationship is prob ably the simplest 
that is consistent with the data for 
close-packed metals, and it does not seem 
that a more sophisticated formula would 
be justified. 

In case of Au and Ag, the anisotropy 
in the Fermi surface may affect the KF 
term and thus produce a deviation from 
the first term (5/3) in equation (11). 
Such a conclusion is consistent with the 
calculation of Hsieh and Bolsaiti s [22]. 

Referring again to Figure 1, we find 
that the b.c.c. transition metals Ta, Nb, 
N, Mo, and V fall in a cluster of points 
below the straight line. The relatively 
small variation among the K~ values 
(3.90-4.32) is in contrast to the large 
rang e in the KT values (3 .23-6 .66) for 
the close-packed structures. This is not 
unexpected in view of the relatively 
greater influence of the electronic band 
structure on the elastic moduli for the 
b.c.c. metals [23]. Note also that the 
short range contribution must be 


